第1166节
    “只要有该基因,则孢子体可以产生花粉,个体表现为可育。”    “您仔细想想,如果在雄性核不育系中引入育性恢复基因和花粉致死基因,那么会出现一种什么情况?”    侯光炯再次一愣。    过了数秒钟。    他忽然瞳孔一缩,一把从桌上拿起纸和笔,在算纸上急匆匆的书写了起来:    “假设雄性核不育系是rr,育性恢复基因是r,花粉致死基因是f……”    “那么后代就会有f-r型和f-r两个类型……”    “再然后……”    “妈耶?!”    写着写着。    侯光炯的笔尖瞬间一顿,整个人骇然的抬起头,看向了徐云:    “韩立同志,你说的这个方法……可以筛选优质基因?!”    徐云重重点了点头。    与此同时。    他还不动声色的瞥了眼一旁同样震撼的袁国粮。    大佬,请原谅我的抄了波作业or2……    众所周知。    袁国粮他们后来培育出的杂交水稻,严格意义上来说全称是‘第一代杂交水稻技术’。    这种技术的亩产量不低,但却存在不稳定的情况,在初期的种植过程中其实是遇到过一些歉收情况的。    因此经过改良。    袁国粮团队又先后优化出了第二代杂交水稻技术,以及如今最先进的……    第三代杂交水稻技术。    这个技术的原理其实也挺简单。    就是徐云上头说的那样,在育种过程中引入花粉致死基因以及育性恢复基因。    也就是在雄性核不育系rr中引入与花粉致死基因f,以及与f紧密连锁的育性恢复基因r。    如此一来。    就可筛选获得可育的新型保持系,也就是f-r或者f-r。    但这仅仅是概率上的情况而已。    实际上。    其中的f-r型花粉由于含花粉致死基因而不能存活,因此该保持系只会产生……    r型花粉。    与此同时呢。    该保持系f-r/r自交,又可以生产两种不同基因型的后代:    f-r/r型保持系、rr型不育系。    整个过程中。    花粉致死基因会使带有外源育性基因的花粉致死,使杂交后代中不含转基因元件。    也就是直接避免了转基因食品的撕逼。    换而言之。    这是一种运用了转基因技术原理,但实际上又不含有转基因的神奇技术。    根据后世的实际验收情况。    这种水稻培育技术会使杂种优势资源利用率达到95%以上,远远超过一代的39.7%。    只能说在种地这块,兔子们真的是天赋异禀……    视线再回归现实。    此时此刻。    听到徐云的这番介绍,侯光炯的心中已然被一股发现新世界的惊喜给充斥了。    把基因细分成两种?    这tmd也行?    但很快。    侯光炯便将这股震撼收敛了些许,沉思片刻,对徐云问道:    “小……小韩同志对吧。”    “不得不承认,你提到的这个理论确实很吸引人,但是我们要怎么样才能把两种基因分离出来呢?”    “毕竟dna双螺旋结构提出才十年不到,以咱们现有的技术似乎很难做到这点吧?”    “没错。”    徐云闻言很坦然的点了点头,开口道:    “目前的科学界确实不存在可以定点分离基因的技术,但是……咱们可以自己搞嘛。”    “当年风灵月影社团内曾经出现过一个叫做艾斯·亚波的科学家,此人很喜欢搞一些嫁接实验。”    “他曾经提出过一个想法——能不能利用电泳的方式将碱基反应中存在的片段测序,然后通过聚丙烯酰胺这种物质对它进行定位呢?”    “如果能把花粉致死基因定位分析出来,那就可以通过农杆菌介导至水稻的t-dna了……”    dna。    这玩意儿被发现的时间其实很早很早。    早到1869年的时候,便被一位名叫弗雷德里希·米歇尔的医生发现了。    但它却要一直到二战之后,才真正开始被生物学界注意并且产出成果。    例如在八年前。    沃森才刚刚发现了dna的双螺旋结构——这个过程还发生了一次生物学史上的知名撕逼,哪怕在徐云穿越的时候都依旧没停。    一些群体还把这事儿带成了诺贝尔奖歧视女性的节奏,得亏这不是个华夏奖项……    总而言之。    后世一所专科院校都能轻易完成的基因分离,对于眼下这个时期却比较困难。    截止到目前。    唯一被测序成功的物质只有一种。    就是……    胰岛素蛋白。    再往后……也就是第二个被测序的trna,就要晚到64年了……    不过也正因如此。    基础的dna测序定位在眼下这个时期属于无人能做到、但从上帝视角来看其实技术并不存在明显壁垒的情况。    另外根据10.13271/j.mpb.013.001201这篇论文不难看出。    水稻花粉致死基因只需要测定11个乳糖抑制因子结合位点的碱基就行了。    这和7年后噬菌体λdna的结合末端测序,实质上属于同档位的技术要求——其实还要更低一些。    也就是用聚丙烯酰胺凝胶电泳法,去测定每个碱基反应中存在的片段的大小。    接着通过单碱基分辨率分离出dna片段,将每个碱基一条标记的凝胶放置在x射线胶片上。    如此一来。    胶片便会产生一个梯形图像。    最后从中即可读取该片段的序列,按照大小上升四条标记,推测碱基的顺序。    这项技术即便是目前国内的科技水平,依旧也能轻松达标。    诚然。    这种分析可能需要很长的时间。    半年、十个月、一年甚至两年都有可能——当年胰岛素蛋白的测序时间就超过了一年。    但别忘了。    水稻一代二代的培育也需要最少两年的时间,也就是说二者其实是不冲突的。    很可能二代水稻培育出来,这边的测序定位也就完成了。    更关键的是。    一旦兔子们尝到了dna测序带来的甜头。    那么……    pcr技术,还会远吗?    要知道。    这可是现代生命科学研究领域中最基础和最常规的实验方法,甚至没有之一!    一如里番被分成蒂法出现前和蒂法出现一样,基因测序的分割点便是pcr技术。    不夸张的说。    它的出现打开了分子生物学研究的热潮,划开了生命科学研究的后时代,为生命科学研究和临床检测带来极大便利。    在徐云穿越的后世,pcr技术出现过三次迭代。